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ABSTRACT

This paper makes two important contributions to the theory of bandwidth
selection for kernel density estimators under right censorship. First, an
asymptotic representation of the integrated squared error into easily
understood variance and squared bias components is given. Second, it is shown
that if the bandwidth is chosen by fhe data-based method of least squares
cross-validation, then it is asymptotically optimal in a compelling sense. A
by-product of the first part is an interesting comparison of the two most

popular kernel estimators.

'ut

S % WY

ml

LYY

"'.<
y "y “wciec]]

r
0

W

o
a

DY

AR TRR I

a

»

.
“
.




.
L]
:
!
.
t
1,
1
§
",
;
¥
.
\.
[y
L]
:
;
| AT

1. INTRODUCTION

TG A K 5 ]

i Kernel-type estimators of an unknown probability density function from

right-censored data have been studied recently by several authors (e.g. Blum ;
and Susarla, 1980; Diehl and Stute, 1985; Foldes, Rejt6 and Winter, 1981; .
McNichols and Padgett, 1985; and Stute, 1985). Padgett and McNichols (1984)

gave a review of available results on kernel density estimation from censored

et e w s A BB

data. The details of the forms of these estimators are in section 2.
) As in the complete sample (i.e. uncensored) case, the choice of the

smoothing parameter, or bandwidth, is crucial to the effective performance of

LRI LI LR

the estimator. Intuitively, if the bandwidth is too small, there is too much
"variance" in the sense that features which belong only to the particular data
set, and not to the underlying density, may be seen in the estimate. If the

bandwidth is too large, there is too much "bias" in the sense that features of

the density are smoothed away.

; In the complete sample case, an elegant mathematical quantification of the ;
E above intuition may be found in Rosenblatt (1956), Parzen (1962), Watson and k
: Leadbetter (1963), and Rosenblatt (1971). 1In particular, they show that the .

Mean Integrated Squared Error (MISE) has an asymptotic decomposition as a 3

simple variance term, a simple squared bias term, and some negligible terms.

In section 3 it is seen how this type of decomposition may be done in the case

of randomly right-censored data. Along the way, approximations are found for

—————

the two most popular censored-data kernel estimators which give insight into __i}_____
exactly how they are related.

ao

While this asymptotic representation of MISE provides considerable

insight, it is not very useful for selecting the bandwidth because the
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minimizer of the two dominant terms contains quantities which are harder to

estimate than £ itself. As this is also true in the complete sample case,

there has recently been considerable work done there on data-based bandwidth
selectors. One of the most promising methods is least squares cross-

validation, introduced by Rudemo (1982) and Bowman (1984). The bandwidth

selected in this way has been shown to be asymptotically optimal under various
conditions by Hall (1983), Stone (1984), Burman (1985), Hall (1985), and Marron :
(1985). Deeper asymptotic properties are established in Hall and Marron

(1985a,b).

In section 4, it is shown that least squares cross-validation is also
effective in the case of right-censored data. 1In pa;ticular, asymptotic
optimality, in the same sense as for the complete sample case, is established.
Section 5 contains the proofs. Finally, a practical method for choosing

between the two different common kernel estimators is suggested.

2. THE ESTIMATORS
The two best known kernel density estimators are based on estimates of
distribution functions. In the censored data case, a widely used distribution

function estimator is defined as follows.

Let xg,..,xz denote the i.i.d. survival times of n items or
individuals that are censored on the right by i.i.d. random variables
Uy,e.0Uy which are independent of the xg's. Denote the common distribution
function of the X{’s by F® and that of the U,’s by H. Let B =1-H It
is assumed that F° is absolutely continuous with density £© and that H is
continuous.

The observed randomly right-censored data are denoted by the pairs




(xi’Ai)' i=1,...,n, where
X, = min{x{,U;} mdAi-lwis%],
with 1[.] denoting the indicator random variable of the event {[-].
Based on (xi,Ai), i=1,...,n, a popular estimator of the survival
function 1-F°(t) is the product-limit (PL) estimator, proposed by Kaplan and
Meier (1958) and shown to be "self-consistent" by Efron (1967). Let

(zi'Ai)' i=1,...,n, denote the ordered xi's along with their corresponding

Ai's. The PL estimator of 1-F°(t) is defined by

(1, .0t g Zl
a k-l . A-
n-1 1
Pn(t) = i-nl (m) R Zk—l <t< Zk, k-2,_...,n,
\ 01 t> 2.

n
Denote the PL estimator of FO(t) by Fn(t) - 1—Pn(t), and let sj denote the

jump of P, (or Fn) at zj, that is

1-p_(2,), j=1
5 = Po(Z5) = B(Z4), 3=2,..0,0-1
Pn(zn)r j-n.

Then for j < n, sj = 0 if and only if Aj = 0, that is, zj is a censored

observation. For various properties of the PL estimator, see Breslow and
Crowley (1974), CsSrg; and Horvéth (1983), Foldes and Rejtd (1981), Foldes,
Rejto and Winter (1980), Gill (1983), and Wellner (1982), among others.

a

The distribution function estimator, F

n’ is very naturally used to

construct a density estimator by defining

LA
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-1 o _ x-t, .0
£.(x) =h " [ R(SFF)F (x)

-nt 2 s.x(x-z').
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This estimator has been studied by Foldes, Rejto and Winter (1981), McNichols
and Padgett (1986), Diehl and Stute (1985), and Stute (1985).

An alternative kernel estimator has been proposed by Blum and Susarla
(1980), extending the results of Rosenblatt (1976) to censored data. It is
motivated by the fact that a reasonable (and technically easy to handle) esti-
mate of fo(x)H*(x) is given by
13 x(?i)

o..* -
(£°8 ) (x) = (nh)

1 -
A.=1] °
( j )
Hence, it makes sense to estimate £°(x) by (fOH*)n(x) divided by an estimate

of H*(x). If we reverse the intuitive roles played by x? and Ui' then the

product-limit estimator for H* is given by

1, 0<t <3z
- k-l : l-Ac
n-1 1
H (t) = 131 (ooeg) 0 Byg <t €%, k=2,....n
0, t>2zZ. .

n
This does not make a good denominator because it takes on the value zero, so

Blum and Susarla propose changing ﬁn slightly to

(1, 0<tgz

1'
k-1 . 1-A,
* n-i+l i
Hn(t) - iEI ‘BZIIE’ ' zk_1< t < zk, k=2,...,n,

n 1-A,

n-i+l i

n (ﬁ:I:f) ’ zn < t.
(\ i=1
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Hence, define

1 0 x-X,
I K( )1 .
. h 4.=1
=1 (85=1]
To get some idea for what the relationship is between the estimators fn

* * -
fn(x) = [nth(x)]

and f;, note that from Susarla, Tsai, and Van Ryzin (1984) for each j,

sj - /\.:.l[n;xn(zj)]-1 . Hence, we may write:

n 4. x-X.
£ (x) = jfl ~ (i - K 1, (2.1)
n j -
* n 4. x-X.
£(x) = & L r(—h . (2.2)

j=1 nH (x)h

Since ﬁn and H; are essentially the same, the only significant difference
between the estimators is the argument of the estiﬁﬁte of H*. It will be seen
in the next section that the difference is typically not negligible.

It will be assumed throughout that K is a probability density with
compact support and that K is H¢lder continuous. In addition, h + 0 and
nh »® as n = o, Letting TG = sup{t: G(t) < 1} for a distribution function
G, it is assumed that Ty < Tpo < @ and that fOH* is HSlder continuous of

order ¢ > 0.

3. ASYMPTOTIC REPRESENTATION

The main idea of this section is that fn(x) and f;(x) are essentially
the same as

n 4. x-X.

f(x)= I 1l g(—d), (3.1)
n j=1 nH*(xj)h h

n 4. x-X.
Tx) = £ —1— k1),

j=1 nH"(x)h

~ * * -
respectively, because the convergence of H and Hn to H is faster (-n

..................................

..........................




than that of the density estimators (often ~ n—Z/S)' Essentially, the same
idea has been used by Diehl and Stute (1985) and Stute (1985). For £ equal
to any of fn' f;, fn' or f;, we choose to analyze its performance by studying
the Integrated Squared Error, ISE(£) = [o[£(x) - £2(x)1%w(x)dx, where w(x)

is a nonnegative weight function.

There are two major reasons for working with ISE instead of with its
expected value, MISE. First, ISE is a more compelling error criterion because

it assesses how well f is doing for the data set at hand, instead of only for

the average over all possible data sets as is done by MISE. Second, ISE is

more natural for the automatic bandwidth selection results of the next section.

S B OF RENE B SR AR S h L )

It should be pointed out that by using methods sligﬁtly easier than those used
here, all of our results can be formulated in terms of MISE. Also, there is an
obvious extension of the theorems of this section to the pointwise convergence
of the estimators when it is assessed by the Mean Square Error.

The role of the weight function, w, is to eliminate endpoint effects.

LT lY s v T

Assume in particular that w is bounded and supported on [0,T], where

w e

T<TH'

The statement of the theorem will be uniform over h ¢ [x‘l_1+

€n%1,
some ¢ > 0. This is necessary for the automatic bandwidth selection results
of section 4.

Theorem 3.1. Under the conditions on K, foﬂ*, F°, f°, and H stated in

€

section 2, for h ¢ [n_1+ ,n ¢], we have

B x s s &0 TTHERY « ¢ ¢+ ¢ [ ¢

Iss(fn(x))-[an'lh'1+b1

sup 1T +0 a.s., (3.2)
h an “h “+b
’ ISE(£) (x))-[an"h~Lep")
sup —— +0 a.s.
g h an~tn~ b '
;
_
é;;-._,. e A )
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where
Q
a = (k%) (5 £,
H

and where b, b" are defined by
b = [ B(x,h)%w(x)dx,

2 w(x)

(6" (x)1%

B(x,h) = | R(u)[£2(x-hu)-£°(x)1du,

b* = [ 8"(x,h) dx,

B (x,h) = [ K(u)[£2(x-hu)B" (x~hu)—£2(x)H" (x)]du.

Remark 3.1. Note that an immediate consequence of Theorem 3.1 is the ISE

. *
consistency of fn and fn’

Remark 3.2. The only difference iﬁ the asymptotic representations of ISE
shows up in the bias part. Note that for some choices of £° and H*, b
will be smaller, while for other choices, b* will be smaller. Hence, the
estimators fn and f; are really not comparable from this representation.

However, note that, by an addition-subtraction,

* * *
B ix,h) = [ K(u)£%(x-hu) Pi(x—h:)—ﬁ (X)]dx + Bix,h).
H (x) B (x)

So in a weak sense, f; has an extra "noise term", which may make fn slightly
preferable.

Rates of convergence may be computed in the usual manner of Rosenblatt and
Parzen. Further, Theorem 3.1 yields an asymptotic bandwidth which is optimal
in the same sense as the bandwidths of Rosenblatt and Parzen except that the
random error criterion ISE is used in place of its mean. This is given in the

next remark.

Remark 3.3. (i) It is well known in the complete sample case that by allowing

K to take on negative values, a faster rate of convergence can be obtained.

M. N NS
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Theorem 3.1 demonstrates that the same is true here. In particular, suppose

1, j=0,
[ xIk(x)ax = { 0, §=1,... k-1, (3.3)
K, Jj=k,

(for k > 2, this violates the assumptions of Theorem 3.1; however it is
straightforward, but space-consuming, to modify the proofs to allow for this).

*
If we assume that f° and f°H have k uniformly continuous derivatives,

then
b = h¥* (K 211£%) ™) 1% ax + on®),
b* - h2k<§r)21l(f°n*)(k)12 w* zdx + o(th).
' (H") :

Hence, for the estimator fn’ the "classical optimal bandwidth" has the form

o}
(5x?) (12 1/(2k+1)
_— H 1/(2Kk+1)
O | iRy

n-2k/(2k+1)

and the rate of convergence is ISE ~ . Here and in the following

*
remarks, there are obvious analogues for the estimator fn'

To see how Theorem 3.1 implies that h, behaves like the optimal band-

0
width of Rosenblatt and Parzen (the complete sample case), define

EI

o]
o = 0t En 2
. .

By (3.2}, with obvious notation,

ISE(f,,h)-El4(h)
EI,(h)

sup -0 a.s.

h

Let hM denote the minimizer of ISE(fn,h) and recall that h., 1is the

0
minimizer of EIo(h). Then from the inequalities ISE(fn,ho) b ISE(fn,hM).

and EIO(hM) 2 EIO(hO), it follows that




ISE(f_,hg)-ISE(£ , hn)l
ISE(f ho)

ISE(fn,ho)-EIO(ho)
EIo(ho)

ISE‘fn,hM)_EIo(%)
EIO(hM)

>0 a.s.

EIo(ho)
ISE(fn,ho)

EI,(hy,)

ISE(fn,hM)

+

% %%

Hence, -
'
ISE(fn,ho) »

, Inf ISE(f_,m) "L 3:S- -
h n -

which shows that h0 is optimal in the same sense as the bandwidths of ™

Rosenblatt and Parzen, except for the fact that the random ISE criterion is

ORI

used in place of its mean.

Remark 3.3. (ii) If we keep the assumption (3.3), but suppose £° has p<k
derivatives (p need not be an integer by putting a H6lder condition of order

p-[p] on the [p]-th derivative, where [+] denotes the greatest integer less

than or equal to p), then it can be shown that b* £C h2p for some positive

5 % S r Sy

constant C. Hence, by taking h ~ 1/(2p+l)' the well-known (see, for

[

example, Bretagnolle and Huber (1979)) "optimal rate," ISE ~ n_ZR/(2p+1),

can be obtained for our censored data problem.

P LSO

4. AUTOMATIC BANDWIDTH SELECTION
For data-based bandwidth selection, we propose least-squares cross-valida-
tion, which was invented, for complete sample density estimators, by Rudemo
(1982) and Bowman (1984). This is motivated as follows. Let E denote

either fn or f;. Since the third term of

v .
I

ISE(f) = [ £2w - 2 ££% + [(£2)%w :
is independent of h, we would like to choose h to minimize the sum of the

first two terms. The first term is known. The integral of the second term can

v
<
B
Ll




be unbiasedly estimated by

n . w(xi)
L f.(X,) ——
. it
i=1 Hn(xi)

-1
n 1
[Ai-l] !

where Ei is the "leave-one-out" version of £, given by
x-xi
B )1[Aj-1]

1
fn,1 %) = 'i' (n-1)H (X )hx(
j#i (%

when f£ is fn' and by

x-X,

£, 1(¥) = 2 S Kb, )
j

n,1 j#i (n-1)H (x)h

when f is f;. Thus, we define hC to be the minimizer of the least-squares

cross-validation criterion

n . w(xi)
T f_(x.)____l .
=1 1Y Ex) [8;=1]

cv(h) = [ [£(x)]%w(x)dx - 2n~1

Theorem 4.1. Under the conditions of Theorem 3.1, hc is asymptotically

optimal in the sense that

ISE(E,hc)
i -
inf ISE(f,h)

h

Remark 4.1. Theorem 4.1 says that ﬂc is optimal under either of the
assumptions stated in Remark 3.3 (i) or Remark 3.3 (ii). This generalizes
the important asymptotic optimality results of Hall (1983), Stone (1984),

Burman (1985), Hall (1985), and Marron (1985) to the case of censored data.

Remark 4.2. The fact that CV(h) essentially provides an estimate of
ISE(f,h) suggests a practical method of choosing between fn and f;. In
particular, if CV(h) for f = £ is smaller than CV(h) for £ = £, then

the estimator fn should be used, as its ISE will probably be smaller.
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5. PROOFS OF THEOREMS
All proofs are given for the estimator fn(x), as it will be obvious how
to adapt them to handle f;(x). The symbol C will be used for a generic
constant. Note first that, using the notation (3.1), by adding and subtracting
fn(x) '

ISE(fn) - Iss(fn) + II + III, (5.1)
where )

IT =2 fo [F (x) - £2(x)1[£(x)-F_(x)] w(x)dx,
11 =[5 (£ (x0-F_(x)1% w(x)dx.

Proof of Theorem 3.1. We analyze each of the terms ISE(fn), II, and III

separately, First, by a "variance-bias squared" decomposition, and standard

computations of the type in Rosenblatt (1971),

m:ss(fn) = E(Isz(fn)) =v+Db, (5.2)
where
o]
v =0l x?) (0 £ 4 on~tnY, (5.3)
H

and where b is defined in section 3. The fact that ISE(fn) behaves like
MISE(fn) is contained in the following lemma.

Isz(fn)-nxsz(fn)

Lemma 1. sup
h

>0 a.s.

MISE(E )
The fact that term III is negligible is contained in

III

Lemma 2. sup | ————
MISE(Z )

h

- 0.

It follows from the Schwartz Inequality, Lemma 1, and Lemma 2 that III

may be replaced by II in the statement of Lemma 2.

This last fact, together with (5.1), (5.2), (5.3), Lemma 1, and Lemma 2

2]

s

e v P v

R}

¢ L

by P T J




F T

AT X

12

complete the proof of Theorem 3.1.

Before proving Theorem 4.1, we give the proof of Lemmas 1 and 2.

Proof of Lemma 1. lLet N = #(Ai-l). For vw=1,...,n, conditioning on [N=v],

{xi: Ai-l} is a set of v i.i.d. random variables with density fOH*/p,
where
p = [SEP0x)H (x)dx.
Let E | denote expectation under this conditional distribution. The method of
the proof of Theorem 1 of Marron and Hardle (1986) shows that, under the stated

assumptions, for k=1,2,..., there exist constants C > 0 and vy > 0 so that

Iss(fn)-ev(xss(fn)) 2k

sup E, <ok, (5.4)
h E,(ISE(E)))
To analyze EV(ISE(EB)), note first that

o
Evfn(x) - f(x) =

(o) %*
-2;-*1_K(2‘;’X)ﬂ1)_li_(ﬂ.dy-f°(x)
n- . (y)h h P

A 0 (o)
= [ K(u)[5§ f (x-hu) - £ (x)]du
v v (o}
= E B(x,h) + (E -1)£(x),

where B(x,h) was defined in section 3. Next note that

z Z (012 n 1 x-X;
E[E(x)-Ef (x)]“=var. [ L K( )1 ]
v n v n v nH*(xi)h h [Ai-ll

1 x-X

Y R(—)]

= — var_|
nd v B (X, )h

oy -1-1 02 f£2%) . v -1 -1
np n "h “(JK") H*(x) + o(np n"h 7).

Thus, by a "variance-bias squared" decomposition,

EV(ISE(fn)) -v,+ bv'

v'{"

o,y sl

ay % By

AP

e
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where

v -1 -1
v, = EE v + o( np n h™),

for v defined in (5.3), and where

= (5% + 25 (5 1) 7 Blx, M E(x)w(x)dx

+ (35 0217 L0 wxx,

for b as in section 3. Hence,

-1

v v -1
%Uﬁ@&)-m%@d+($-nv+mﬁm

h ™)

+ ((—-) -1)b +2 2 P (55 -1) IO B(x, h)f (x)w(x)dx

+ (— -1) Io £° (x) W(x)dx

Now for small T > @ and for n=1,2,3,..., restrict attention to v

between np—n8+1 and np + n%+1. For such v,'—- €2 and

np -
L—-l]gcf*‘

for a constant € . It follows from (5.2) and (5.3) that, for a different

value of C, and for n sufficiently large,
inf MISE(E ) » C n 1*S, (5.5)
h n

Hence, for small +t, large n, and another C,

sup E,(ISE(E ))-MISE(E ) et |
h MISE(E )
n
Thus, for such v, from (5.4),
ISE(E )-MISE(E ) 12k
sup E [ L L ] <cn ¥, g
h nxsz(fn)

T
R L

Now, let rh be a subset of [n'1+e, n'el so that successive members of

r, are separated by a distance less than or equal to n ° and so that

MI) < n® for some p > 0. Then, using obvious notation,

.......
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Isz('fn,h)-msz(fn,h) Z
P(sup 2 €] !
h MISE(E oh)
.
ISE(f_,h)-MISE(f_,h)
< P|sup n n N _g_] r
el msa(fn,h)
. p . Isz(fn,h)-russ(fn,h) _ Isa(fn,h')-msz(fn,h') , g] ;|
|h-h? ]| <n”® MISE(E ,h) MISE(E ,h’) 2 ;
n . ISE(E_,h)-MISE(E_,h) K
= I ('\‘,)p\’(l-p)n \’PV[ sup L L > -g— ], )
Va0 hel MISE(E_,h) >
where the last equality comes from a continuity argument and the assumptions .
that K is HSlder continuous and has compact support. Letting -
An,r = (np ~ n”“, np + nl’“],
1E(E_,h)-MISE(E ,h) A
Psup > €
h msz(fn,h) .
B
1y
1SE(f_,h)-MISE(E_,h)
< I (2)9"(1—p)““’1>\,[sup . — > %] :
veR, . . h msr-:(fn,h) —
;
P
+ L (QPU-p)T
\’ﬂn,‘t
1SE(E_,h)-MISE(E_,h)
$ L (Qpli-p™Y 1z P\»[ L o > %] + 28(-n")
WAn,-r hel MISE(In,h)

‘v
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) ~ ISE(f ,h)-MISE(f ,h) ]2k ,
| £ I (I\:)p\’(l-p)n Vnp(;z:-)2ksup E, n n + 28(-n") *
veA, o h mse('fn,h)
N
N
< ¢ n°n" "% 28(-n"), (5.6). :
where @& denotes the standard normal cdf. But, for k sufficiently large, :
the first term on the right side of (5.6) is summable on n, and, since the "
second term is also summable on n, the proof of Lemma 1 is complete. :
Proof of Lemma 2. Using the assumption on the support of w, and using the Fr
compactness of the support of K, observe that for n sufficiently large,
n ’ x-X, :
sup III = sup J3 [ I (—i— - 51— R(—2)1p, _lllzw(x)dx -
h h i=1 H_(X.,) H (X,) i -
n 1 1 i
* £
< swp |- L |)sup f51(£%") (01 Pwixian),
te(0,T'] | H (t) H (t) h N
where T’ = (T+TH)/2' and where (foil"‘)n was defined in section 2. Lemma 2 K.
is now a consequence of the results of Csorgo and Horvath (1983) together
with (5.5) and the fact that there is a constant C so that
® o, * 2
sup [y [(£7H ) (x)]"w(x)dx < C  a.s. (5.7) :
h
To verify (5.7), note that by adding and subtracting fO(x)H (x), 2
© o, * 2 :'
Iol(fH)n(X)] wix)dx = U+ V + W, .

where

U= 03 [(£%")_ - £%5*12 w(x)dx,




"
<
¢
¢
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V= 2f [(f°a"")n - %" 1 (£%" Jw(x)ax,
W= J [(£%%" 1 2w(x)dx.

Now W is deterministic and independent of h. An argument similar to (but
slightly easier than) that used above on ISE(fn) gives

supU-~>0 a.s.
h

An application of the.Schwartz inequality to V yields (5.7), which completes
the proof of Lemma 2.

Proof of Theorem 4.1. Here again, only the proof in the slightly harder case

of f= £, is given. We note that by a computation similar to that used to
verify Remark 3.3 (i), Theorem 4.1 follows from (3.2) and the result that
|cv(h)-1SE(£ ,h)-[CV(h )-ISE(£ ,h’)]|

sup -0 a.s. (5.8)
h,h’ MISE(fn,h) + MISE(fn,h’)

To prove (5.8) it is enough to show that

0
|cv(h)-ISE(f, ,h)-2(n"L ;:l f(xi)ﬁl - I(f°(x))2w(x)dxll
n’ : Ha(xi) [Ai-ll

i=1
sup MISE(fn,h)
20 a.s.
This may be rewritten as
n
|2n-1(n—1)_1 I I Ui"
i=1 §2i °J 20 a.s
sup MISE(f_,h) Y
where
U = h‘lK(xi;xj) H*(;(?éi(x )1[A =1,48.=1]
J n' i’ n'Yy i)
-X . (o]
-1 X 4, £ {x)w(x)
- R (—1) = dx 1
X, 8;=1
R HAX)) [8;=1]
¢ 7 'Ia\-f.f P S AR S IR RN ¥ RS _‘.r_..'_'__;‘ : .'..\’sri.f "o e ;'.‘.-"\.':‘; ''''' ‘;'.‘:.-.(': SRR
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o]
£ (xi)w(xi)

2
-——a 1 + JIES(x) 1%w(x)dx
Hﬁ(xi) [Ai-ll

defining
Uy = nt K(xi;xj) H*(:(T;:(X ) 1[A =1,48,=1]
b n'"j i i3
-1, X% £%x)w(x) .
- [hR(—) dx 1
h H*(X. 4.=1
LE [84=1]
o
f (Xi)W(Xi)

—_— 1 o] 2
- H*(X;) l[Aial] + Jif (x)IIfo)dx
and
X.-X, w(X.)
“lei g i
%ij [h "R BmEy 1[Ai-1,Aj-1]

1 1
- £9(x, )w(x. )1 ] [ - ]
i i [Ai-ll H;(Xi) H*(xi)
Theorem 2.2 then follows from the two lemmas:
Lemma 3.

n
ln’l(n-l)'1 I I Uijl
i-} i#£1i 50

sup a.s
h MISE(f,h)
Lemma 4.
n
|n’1(n-1)'1 LIz
sup i=1 jei +0 a.s.
h MISE(f,h)

Proof of Lemma 3. This proof combines the ideas of Lemma 2 of Marron (1985)

with those of the proof of Lemma 1 above. Recall that in the proof of Lemma 1,

the notation Ev meant expected value taken over [xi: Ai'l}’ conditioned on

................
TR SRR AT AT
Pt A, \.."L'ﬁ_}i s
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the event {N=v}. The censored observations {Xi: Ai-O} were ignored in the
definition of E, since they did not appear in the quantities being analyzed.
The censored xi's do appear in the following, so it will be understood that
E, denotes expected value as above, only also conditioned on {xi: Ai-O] (or,
equivalently, Ev denotes integration over {xi: Ai-ll, which are i.i.d
random variables with density fOH*/p).

For v=1,...,n, Uij =U'. + 2%, where

2% T 2 ¢ JHEENERTY.T . s . SRS E-AS & WA AERER A% TS TR AT e 7

RES jv
X.-X. w(X,)
uy-ﬁlmzlhmx@m)ﬁodAd]
] n' 53 i3

-y Ih_lK(f:fi) w(x) fo(x)dx 1

np h™ HX(x) (8;=1] -

£9(x. )w(X, )

i i v o 2

_——lmi—')——-rﬁf [£(x)] " w(x)dx

and

20 = (X ) [fh‘lmﬂi) WX) £O(y)dx 1
j np h

Jv H;l(x) [Aj'll

- [ 1£2(x) 1 %w(x)dx] .

Using the method of proof of Lemma 2 of Marron (1985), it can be shown that,

for k=1,2,..., and n sufficiently large,
n

ntn-1)r r rur, 72
h Y MISE(£,h)

regardless of the realization of {Xi: Ai-O}. In a similar manner (i.e.,

approximate H;(x) by H*(x), including another %E -1 term, and using the

cumulant-style argument of Marron (1985)), we can obtain

n

nlz Z3y 2k
sup E —i=t <cn Yk,
MISE(£f,h)

h




19

These two inequalities may now be used in a computation similar to that yield-

ing (5.6) in the proof of Lemma 1 to finish the proof of Lemma 3.

Proof of Lemma 4. Write

|n‘1(n-1)‘1 t r oz |
igei M

-1 o}
= |n LI (X)-£7(X)]I

1 1
i ARE T~ R =)

RN

< {n-l

<t g g (x)-22x1% 1, wix)

[(8,=1]

Ll
i

1 1 .2 k!
- 171 w(X. )} . (5.9)
HA(X;) ~ H*(X,) [(8,=11""71

The expression inside the first square-root on the right-hand side of (5.9) is

the "leave-one-out" version of the average squared error and will be denoted

by ASE(fni). Using the methods of Lemma 1 of Marron (1985) and Theorem 2 of
Marron and Hardle (1986), it can be shown that for k=1,2,... there is a

constant C so that

ASE(f_.)-MISE(f_,h) 12k

E
MISE(fn,h)

The proof of Lemma 4 is then completed by a computation like that leading to

(5.6) in the proof of Lemma 1, which includes the uniform convergence result

for the product-limit estimator H; used in the proof of Lemma 2.

-----------------------------
................................
..................

.........................
--------
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